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Bubble collapse near a solid boundary:
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The effect of viscosity on jet formation for bubbles collapsing near solid boundaries
is studied numerically. A numerical technique is presented which allows the Navier–
Stokes equations with free-surface boundary conditions to be solved accurately and
efficiently. Good agreement is obtained between experimental data and numerical
simulations for the collapse of large bubbles. However, the bubble rebound in our
simulation is larger than that observed in laboratory experiments. This leads us to
conclude that compressible and thermal effects should be taken into account to obtain
a correct model of the rebound. A parametric study of the effect of viscosity on jet
impact velocity is undertaken. The jet impact velocity is found to decrease as viscosity
increases and above a certain threshold jet impact is impossible. We study how this
critical Reynolds number depends on the initial radius and the initial distance from
the wall. A simple scaling law is found to link this critical Reynolds number to the
other non-dimensional parameters of the problem.

1. Introduction
Violent collapse of bubbles in asymmetrical geometries occurs in a number of situ-

ations of practical interest including cavitation, and shock-wave and laser lithotripsy.
When close enough to a solid boundary these collapses are usually associated with
high-speed jet formation (Blake & Gibson 1987). While jet formation for cavitation
bubbles was demonstrated experimentally as early as 1961 (Naudé & Ellis 1961)
there is still debate regarding the importance of jet impact as the main mechanism for
cavitation damage. The first explanation was given by Rayleigh (1917) who consid-
ered the high pressure caused by the collapse to be the main damaging mechanism.
An alternative explanation was given by Kornfeld & Suvorov (1944) who suggested
the jet formation effect which was experimentally demonstrated by Naudé & Ellis.
Benjamin & Ellis (1966) then concluded that jet formation and impact was important
and probably the main factor for cavitation damage. Recently, however, a number of
experiments have cast doubt on this explanation. In these investigations, the damage
was found to be distributed around a circumference and not on the axis of symmetry
as would be the case if jet impact was the main factor in cavitation damage (Tomita
& Shima 1986). Philipp & Lauterborn (1998) conclude that the main mechanism for
cavitation damage are the high pressures and temperatures reached inside a bubble
collapsing very close to a solid boundary.
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A number of aspects of bubble collapse in bounded domains thus remain open
questions. However, the analytical study of the problem of bubble collapse in the
vicinity of a solid boundary is very difficult. Consequently, apart from the per-
turbation approach of Rattray (1951), most of the results were obtained using
numerical solutions of boundary integral formulations (Plesset & Chapman 1971;
Blake & Gibson 1987, Blake et al. 1993). These methods are based on the sur-
face integration of a potential solution for the fluid flow and can be used only
for vanishing viscosities or vanishing advection terms (Stokes flow). In all the stud-
ies so far the effect of viscosity has thus been neglected. While good agreement
was found between numerical and experimental results, due to obvious practical
considerations experiments are usually performed with large bubbles (millimetre
sized). In these cases, viscosity is unlikely to play a major role and inviscid cal-
culations give good results. However, one can ask how these results would scale
for smaller bubbles where viscosity and thermal effects are likely to come into
play.

Thermal and viscous effects are important for intermediate sized bubbles (50 to
2 µm) and viscous effects dominate for smaller bubbles (less than 2 µm) (Plesset &
Prosperetti 1977; Brennen 1995). The present approach includes only viscous, not
thermal effects. There are several reasons for this: the most important is the need
to build numerical methods incrementally, adding effects one at a time. The second
is that reducing the number of physical parameters is important to allow a detailed
analysis of the phenomena. Thus our approach, at the moment, includes only the
most important dissipative effects for very small bubbles. These small bubbles may
not be particularly interesting in terms of damage in practical situations, but there
are special cases, such as damage to living tissues in the case of high-level ultrasound
exposure, where small bubbles are involved.

It will probably be difficult to compare the results of this study with experiments,
given the small sizes involved. However we believe that our numerical technique
and the results in this paper can give useful insights. Furthermore, it may be a
useful step in building more complete methods, involving thermal and compressible
effects.

An important difficulty when implementing the free-surface condition in viscous
flow at finite Reynolds number is to obtain a quantitative agreement with theoretical
results, for instance the Rayleigh–Plesset equation. We are not aware of comparisons
of that kind in the literature.

There are few numerical studies of cavitation that take into account the free-surface
condition and the viscous effects. One exception is the work by the Tryggvason group
(Po-Wen, Ceccio & Tryggvason 1995). The method employed by that group, which
also involves marker particles, is rather similar to our method here, except that we
implement the free-surface boundary condition at a higher order of accuracy. On the
other hand the work of Po-Wen et al. (1995) is fully three-dimensional, while our
work assumes axial symmetry.

In this article, we describe an original numerical technique which allows the res-
olution of the incompressible Navier–Stokes equations in axisymmetric coordinates,
without swirl, with free-surface boundary conditions. We then present the results of
comparisons between our numerical results and experiments for bubble collapse and
jet formation near a wall. Then, because the code is fast enough to allow a paramet-
ric study of the influence of viscosity on jet formation and evolution, we present a
phase diagram function of the independent non-dimensional parameters illustrating
the effect of viscosity on the impact velocity.
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2. Numerical technique
We present a numerical method for solving the axisymmetric Navier–Stokes equa-

tions with free-surface boundary conditions. While this has been done in the past, the
methods used either made crude assumptions about free-surface boundary conditions
(Harlow & Welch 1965; Chan & Street 1970; Nichols & Hirt 1971; Hirt & Nichols
1981) or used boundary-fitted grids (Blanco & Magnaudet 1995; Legendre 1996).
Our method is based on a finite volume formulation using both a fixed grid and
a front-tracking approach. The free surface is tracked using surface points (mark-
ers) connected with cubic splines. This allow us to deal with surface integral terms
appearing in the finite volume formulation correctly. Moreover, this method is not
limited to simple geometries and can deal efficiently with large deformations of the
interface. This technique constitutes an extension of the two-fluid approach of Popinet
& Zaleski (1999).

2.1. The explicit equations

The incompressible Navier–Stokes equations for an axisymmetric flow without swirl
can be written in cylindrical coordinates as
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where Φ = p/ρ, ρ is constant and the components of the stress tensor are defined as
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where ν is the kinematic viscosity.

2.2. Finite volume formulation

In order to obtain a finite volume formulation necessary for numerical analysis, we
first need to integrate the equations over an arbitrarily moving domain. Let us call
the domain Ω and ∂Ω its boundary; u is the velocity of the boundary ∂Ω. Integrating
over Ω yields the integral equations
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Figure 1. Finite volume discretization.
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Then, considering a square finite domain centred at (zi, rj) of side h, we seek the
integral formulation above for the vr component of the velocity. In the general case
of a free-surface flow problem this control domain can be cut by the interface. In this
case the domain of integration Ω is a piece of the square with boundary ABCDEA
(figure 1). The velocity u of the boundary is 0 on AB ∪ BC ∪DE ∪ EA and v on CD.
Equation (2.9) can then be written

∂

∂t

∫
Ω

vrr dr dz +

∫
BC∪EA

rvrvz dr −
∫
AB∪DE

rv2
r dz

=

∫
AB∪DE

Φr dz +

∫
CD

Φr dz +

∫
Ω

Φ dr dz

+

∫
BC∪EA

rSzr dr +

∫
CD

rSzr dr

−
∫
AB∪DE

rSrr dz −
∫
CD

rSrr dz −
∫
Ω

Sθθ dr dz. (2.11)

We then assume that the different quantities needed are defined either at the centre
(zi, rj) of the cell or at the centre of the cell faces (zi, rj ± h/2) and (zi ± h/2, rj), in a
typical staggered grid fashion (Peyret & Taylor 1983). We also make the assumption
that quantities defined at the centre of the cell are constant over the whole cell
whereas the quantities defined on the cell faces are constant on these faces.

The control domains and discretization of the velocity components and pressure
are illustrated on figure 2. Also note that in the following the convention is to always
define the (i, j) indexes at the centre of the control volumes considered (i.e. each of
the two control volumes for the velocity in this section and the control volume for
the pressure in § 2.3).
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Figure 2. Discretization of the velocity components and pressure and corresponding
control domains.

The products v2
r , v

2
z and vrvz are computed by averaging the velocity components in

the required directions. Similarly, the components of the stress tensor Srr , Szz and Srz
are computed using first-order finite differences (which are second order on a regular
Cartesian grid).

We also introduce some geometrical quantities. Let si,jr =
∫
AB∪DE r dz where the

integral is over the fluid region inside a control-domain (or cell) boundary only. It is
proportional to an area: to be explicit, it is the area (cut by the fluid) of the vertical
face of an axisymmetric, three-dimensional-control volume (or cell) generated by the
two-dimensional control domain Ω. Similarly define the three-dimensional-cell face
area si,jz =

∫
BC∪EA r dr, two-dimensional-cell area ai,j =

∫
Ω

dr dz and three-dimensional-

cell volume ci,j =
∫
Ω
r dr dz. Each cell is the control volume of a component of the

velocity. These quantities are computed as in Popinet & Zaleski (1999), using the
marker definition of the interface.

Using these definitions, in the general case we obtain the following discrete solution
for the vr-component of the velocity:
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where
∫
int

denotes integration along the piece of interface contained in the control
domain. If the control domain is not cut by the interface, this equation reduces to a
simple classical MAC scheme. When the control domain is cut by the interface we
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need to compute the integral terms for the pressure and stresses. The technique used
is detailed in § 2.4.

The equation for the z-component of the velocity, obtained in a very similar manner
is
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2.3. The discrete pressure equation

We use a projection method to solve the incompressibility condition (Gueyffier et al.
1998; Brown, Cortez & Minion 2001). Given a velocity field at time n a temporary
velocity field v? is computed by advancing v in time using a simple first-order in time
discretization of equations (2.12) and (2.13) with the pressure gradient terms omitted
(note that the integral contribution of the pressure along the interface is included
at this point). The pressure is then computed as the correction necessary to ensure
the non-divergence of the velocity field at time n + 1. The Poisson-like equation for
the pressure can then be expressed as a function of the numerical divergence of the
temporary velocity field v?. The velocity field at time n+ 1 is then obtained from the
relations
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We make the assumption that the two components of the velocity vary linearly from
one side of the cell to the other, yielding the expressions for the velocity in a (zi, rj)
cell
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The integrals along the section of interface in the (zi, rj) cell can be computed as∫
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If we assume that Φi,j+1/2 = (Φi,j +Φi,j+1)/2, the incompressibility condition (2.16) can
be written as
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where s′z and s′r are defined as
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The coefficients appearing in equation (2.21) ensure that the discretization scheme
transitions continuously from a classical symmetric finite difference approximation to
an asymmetrical operator in the neighbourhood of the free surface.

2.4. Numerical method of solution

The Poisson-like pressure equation (2.21) is solved using multigrid-accelerated Gauss–
Seidel relaxation (Brandt 1982; Briggs 1987; Wesseling 1992).

The interface is discretized using a set of marker points linked by cubic splines.
This description allows precise information about the position and curvature of the
interface required in order to include the surface tension terms and all the other
surface integral terms appearing in (2.12), (2.13) and (2.21).

As in all free-surface codes (Harlow & Welch 1965; Chan & Street 1970; Nichols
& Hirt 1971; Hirt & Nichols 1981), the most delicate point is the treatment of
free-surface boundary conditions. The pressure on the interface on the fluid side is
given by

p = pi + σκ+ µn · D · n, (2.24)

where pi is the pressure in the bubble, σ the surface tension coefficient, κ the curvature,
µ the dynamic viscosity, n the normal to the interface and D the deviatory part of the
stress tensor. This boundary condition is used directly when calculating the surface
integral pressure contribution to (2.12) and (2.13) in order to obtain the temporary
velocity field v?.
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Figure 3. Mesh and discretization of the velocity and pressure fields. The marker points and the
connecting cubic splines are represented. The light arrows are extrapolated values of the velocity
field. The squares indicate the location of the pressure nodes where the pressure equation is solved.

Since we use a fixed grid to solve the Navier–Stokes equations, we need to ex-
trapolate the velocity field far enough inside the bubble to obtain the velocity values
necessary for the marker point advection and for the solution of the Navier–Stokes
equations on the fluid boundary (figure 3). Moreover, this must be done while fulfilling
the zero-tangential-stress interface boundary condition

t · D · n = 0, (2.25)

where t is the tangent to the interface. Given a point P near the interface, we assume
that locally around P the velocity field can be described as u = u0 + A · x where x is
the position vector and A is a 2× 2 matrix. For this particular velocity field equation
(2.25) can be expressed as eijtinj = 0 with

eij =
∂ui

∂xj
+
∂uj

∂xi
= Aij + Aji. (2.26)

Given a set of N points in the vicinity of P and a vector t tangent to the interface,
u0 and A can be found by minimization of the function

L =

N∑
n=1

(u0 + A · xn − un)2 + λeijtinj , (2.27)

where λ is a Lagrange multiplier. The set of points is chosen as on figure 4. Line
L has direction n(I) and goes through points P and I . A small number of points
(typically five) is chosen around L by minimization of the cost function∑

d(Pi, L)2 + ζd(Pi, P )2, (2.28)

where d is the Euclidean distance and ζ is a geometrical parameter usually set to 1/2.
The marker points are advected using bilinear interpolation and a redistribution is

done at every time step to ensure a uniform distribution as the bubble deforms. The
average distance between markers is of the order of the grid size. As underlined by
Popinet & Zaleski (1999) the computational cost of the marker part of the algorithm
scales as 1/n where n is the number of grid points along one dimension and is thus
negligible for reasonable domain sizes.
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Figure 4. Selection of points for the extrapolation technique around point P .

2.5. Validation tests

The time evolution of the radius of a spherically symmetric bubble surrounded
by an incompressible fluid is described by the Rayleigh–Plesset equation (Plesset
& Prosperetti 1977). As we are interested in bubbles oscillating radially, it is im-
portant to obtain a good agreement between direct numerical simulations and the
numerical solution of the Rayleigh–Plesset equation. In the test case illustrated on
figure 5, a bubble with an equilibrium radius R0 = 5 µm is placed in a fluid initially
at rest. The initial radius of the bubble is 10 µm. A constant pressure is applied
on three sides of the simulation domain (the fourth side being the axis of sym-
metry) and the velocity gradient is set to zero on these three sides. The physical
parameters are as follows: dynamic viscosity µ = 0.001 kg m−1 s−1, surface tension
coefficient σ = 0.07 kg s−2, ρ = 1000 kg m−3, p∞ = 105 Pa. The pressure in the bub-
ble is given by a polytropic law of the form p(R) = p0(R0/R)3γ with γ = 7/5. The
bubble oscillates radially while keeping its spherical shape. The amplitude of the
oscillations decreases due to viscous damping. The agreement between the direct
numerical simulation and the numerical solution of the Rayleigh–Plesset equation is
excellent. The relative quadratic error between the two solutions illustrated is smaller
than 1%.

It is important to note that to obtain such an agreement it is necessary to minimize
the influence of the boundary conditions in the simulation. This is done by using very
large simulation domains. Table 1 gives a summary of the influence of confinement
on the solution obtained. By using the adaptive multidomain technique presented in
the following section the computational cost is still reasonable (approximately one
hour on a Pentium 350 MHz for a base grid of 128× 64).

This simulation is also a good validation test for the extrapolation technique
presented in the previous section. The pressure jump on the free surface due to the
normal component of the viscous stress controls the viscous damping of the solution.
A 2% variation in viscosity leads to solutions of the Rayleigh–Plesset equation varying
by 1.3%. Given the 1% error that we obtain, we can conclude that local derivatives
of the velocity field near the interface differ by less than 2%.
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Figure 5. Free radial oscillations of a bubble of 5 µm equilibrium radius.

Confinement ratio Relative quadratic error
160 0.0095
80 0.037
20 0.192
5 0.564

Table 1. Evolution of the relative quadratic error as the confinement ratio is varied for the radial
oscillation of a spherical bubble. The confinement ratio is the ratio between domain size and bubble
diameter.

However this test does not involve any deformation of the interface and the influence
of surface tension is limited to a constant pressure jump. A second simple test where
the driving force is surface tension is illustrated on figure 6. A slightly ellipsoidal
bubble is placed in a liquid initially at rest. Under the influence of surface tension the
bubble shape oscillates around its spherical equilibrium position. The parameters are
as follows: equivalent radius R = 5×10−4 m, surface tension coefficient σ = 0.07 kg s−2,
kinematic viscosity ν = 5 × 10−6 m2 s−1, ρ = 1000 kg m−3. In order to limit the effect
of confinement the ratio between the size of the domain and the bubble diameter
is 240. The diameter of the bubble is about 128 grid points and the multidomain
technique is used.

The temporal evolution of the relative amplitude of the second mode of deformation
is illustrated together with two theoretical solutions. The first one is the classical
normal mode analysis of Lamb (1932). It supposes a stationary regime of oscillation
and does not take into account transient effects such as the diffusion of vorticity in the
liquid. The second solution is a numerical inversion of a Laplace transform obtained
by Prosperetti (1980) taking into account transient effects. This solution is exact for
this problem in the limit of a vanishing amplitude of oscillation. The agreement
between the numerical simulation and Prosperetti’s theory is excellent with a relative
quadratic error of 0.4% for the first eight periods of oscillation. It is also interesting
to note that the difference between the approximate normal mode solution and
Prosperetti’s solution is significant. This test further confirms that vorticity generation
at the free surface is accurately described by our interpolation technique.
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Figure 6. Temporal evolution of the second mode of deformation of a slightly ellipsoidal bubble
set in a liquid initially at rest.

3. Comparison with experiments
In order to assess the applicability of our numerical method to real cases, we need to

compare our results with experimental measurements. Lauterborn and collaborators
have developed an elegant technique to generate highly reproducible bubbles near
solid boundaries (Lauterborn & Bolle 1975; Lauterborn & Ohl 1997; Philipp &
Lauterborn 1998). The high-speed photographic series of figure 7 illustrates one of
these experiments. A focused short laser pulse is fired in water near a solid wall, a gas
bubble is then formed and expands, eventually reaches a maximum radius and then
collapses violently. A jet is formed near the point of minimum radius and penetrates
the re-expanding bubble.

The main problem we are confronted with is the choice of initial conditions for the
numerical simulation. In fact, neither the initial radius (or initial pressure), nor the
equilibrium radius (or gas content) of the bubble are known. We have chosen to use
initial conditions given by the fit of the classical Rayleigh–Plesset equation (Plesset
& Prosperetti 1977) to the measured time-evolution of the radius. The experimental
time evolution has been measured directly using a digital version of the photographic
series and image processing techniques.

The numerical simulation uses a 512×512 grid. The maximum bubble radius reaches
50 grid points. The bottom boundary of the domain is a free-sliding solid wall (the
normal component of the velocity is zero, the tangential stress is null) and the right-
hand boundary is the axis of symmetry. On the top and left-hand walls the pressure
is constant and set to the ambient pressure (gravity is neglected). No constraint is
imposed on the velocity. The dynamic viscosity for water is 10−3 kg m−1 s−1, the surface
tension coefficient for an air–water interface σ = 0.072 kg s−2 and the density of the
liquid is 1000 kg m3. The process is assumed to be adiabatic and the gas pressure is
given by p = p0(V/V0)

γ where V is the volume of the bubble, V0 = 4.78 × 10−9 m3,
p0 = 100 072 Pa and γ = 7/5. The surrounding fluid is initially at rest and the initial
radius of the bubble is 0.4 mm.

Simulation results are shown on figure 7 with the same spatial layout and interframe
time as the experiments. Figure 8 illustrates the temporal evolution of the equivalent
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Figure 7. Comparison between a high-speed photographic series of a bubble collapsing near a wall
(Lauterborn & Ohl 1997) and a direct numerical simulation. Sampling rate is 75 000 frames per
second.

radius (defined as (3V/4π)1/3) together with the evolution measured experimentally
and given by the Rayleigh–Plesset calculation. The agreement between the experiment
and the numerical result is relatively good with initial jet formations qualitatively and
quantitatively similar. Both the experiment and the simulation clearly show the jet
impacting and deforming the opposite side of the bubble, while the jet is stretched
by the bubble expansion. The jet velocity is reproduced well by the numerical model,
the tip of the deformed bubble touching the wall at approximately the same time.
Another interesting feature revealed by the numerical simulation is the ‘splashing’
effect of the jet impact with the formation of an axisymmetric rim expanding with
the bubble (figure 9). This observation is very similar to results reported by Blake et
al. (1997, 1998, 1999) using a boundary integral technique.

However, we can see both on figures 7 and 8 that the rebound of the bubble is
much larger in the numerical simulation than that observed in the experiment. The
Rayleigh–Plesset equation gives a result comparable to the numerical calculation. The
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Figure 9. Jet formation and impact.

addition of a simple first-order compressibility correction:

R

ρc

d

dt
(p(R, t)− p∞), (3.1)

to the Rayleigh–Plesset equation (with c = 1481 m s−1, the velocity of sound in water)
does not change the result significantly. It would be interesting to see if more complex
models including the thermodynamics of the phenomenon (Keller & Miksis 1980)
can provide better predictions. In any case, these results confirm the intuition that
viscous dissipation is not the main source of damping for these large bubbles and
that the effects of fluid compressibility, in particular the emission of acoustic and
shock waves, need to be taken into account.
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4. Numerical study of the influence of viscosity on jet formation and
evolution

While interesting for validation purposes, the previous result is of limited interest
due to the small influence of viscosity on the fast collapse of relatively big bubbles.
For this type of simulation, a boundary integral code with a viscous boundary layer
approximation would probably give good results (Plesset & Chapman 1971; Boulton-
Stone & Blake 1993). For this reason, we have chosen to focus our attention on the
influence of viscosity on jet formation and evolution for moderate Reynolds numbers.

In order to study the influence of viscosity, we first need to find which characteristic
parameters control the problem. We assume that the pressure in the gas is described
by a polytropic law of the type

p(R) = p∞
(
R0

R

)3γ

, (4.1)

where R is the equivalent radius of the bubble (radius of a spherical bubble of equal
volume), R0 is the equilibrium radius, p∞ is the ambient pressure and γ is a polytropic

exponent. We can choose R0 as a length scale and
√
ρR2

0/p∞ as a time scale. The
Rayleigh–Plesset equation (Plesset & Prosperetti 1977) describes the evolution of the
radius and can be written in non-dimensional form as

R?R̈? + 3
2
Ṙ2
? + 4ν?

Ṙ?

R?
= R

−3γ
? − 1− 2σ?

R?
, (4.2)

where ? denotes non-dimensional quantities. The set of characteristic coefficients is
then

ν? =
ν

R0

√
ρ

p∞
, σ? =

σ

R0p∞
and γ, (4.3)

where σ is the surface tension coefficient, ν the kinematic viscosity and ρ the density.
We need to add the coefficients characteristic of the initial conditions: the relative ini-
tial radius α = RM/R0 and the relative initial distance from the boundary β = H/RM ,
where H is the distance from the centre of the bubble to the solid wall. Thus we have
five independent parameters: α, β, γ, ν?, σ?.

In what follows we present a systematic parametric study. We neglect surface
tension in this study (σ? = 0), as we focus on the main topic of our investigation:
how viscosity can suppress jet formation. Moreover, surface tension is probably still
negligible for rather small bubbles. The analysis of the relevance of surface tension
can be done simply by evaluating the dimensionless σ?. For instance a 5 µm air
bubble has σ? ∼ 0.014. A more refined analysis involving small time and space scales
occurring in the jet formation is deferred until the conclusion of this paper.

We assume that the gas is diatomic and the process adiabatic (γ = 7/5). A Reynolds
number is defined as Re = 1/ν?.

In order to resolve the small scales which can occur for high compression ratios
correctly we have used an adaptive hierarchy of grids. Each grid has a fixed number
of points (128× 64 in all the results illustrated here) but is half the size of its parent.
A typical setup is shown on figure 10. Grids are added or removed as the bubble
shrinks and grows. A single global timestep is used to advance each grid in time (see
Popinet 2000 for further details). This technique allows the use of relatively large
simulation domains in order to minimize the influence of the boundary conditions.

Figure 11 illustrates the influence of the Reynolds number on jet formation and
impact velocity. For high Reynolds numbers (figure 11a) the initial jet velocity is
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Figure 10. Example of the hierarchy of grids used to deal accurately and efficiently with large
variations in bubble radius.

(a)

(b)

(c)

Figure 11. Time evolution of a bubble collapsing near a wall (a) at high Reynolds number
Re = 29.906, (b) at intermediate Reynolds number Re = 24.519, and (c) at low Reynolds number
Re = 18.413. The wall is along the bottom of the box. Not all the simulation domain is shown.
Interframe time is 0.243 in (a) and 0.303 in (b). α = 2.023, β = 2.625.
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Figure 12. Time evolution of the position of the poles as a function of the Reynolds number
indicated in the legend. α = 1.754, β = 1.5. (b) Expanded view of the area shown in the box in (a).

high and the impact occurs shortly after jet formation. For low Reynolds numbers
(figure 11c), the initial jet velocity is small and the velocity of rebound off the opposite
wall of the bubble is large enough to prevent any impact. For intermediate Reynolds
numbers (figure 11b), the initial velocity of the jet is comparable to the velocity of
rebound off the opposite wall, the jet is stretched by the expansion of the bubble,
the impact is delayed and the impact velocity is small. The critical Reynolds number
Rec is defined as the Reynolds number for which the impact velocity is zero. If the
Reynolds number is smaller than Rec, the jet never impacts the other side of the
bubble.

This transition is illustrated differently on figure 12. The lower curves (thick lines)
represent the time evolution of the position of the south pole (closer to the wall)
for the different Reynolds numbers shown in the legend. The thin lines are the time
evolution of the north pole and the upper curves describe the evolution of the position
of the point farthest away from the solid wall. The upper and lower curves describe
the global dynamics of the bubble: collapse until t ≈ 2 followed by a re-expansion
and motion of the centre of gravity toward the wall. The thin lines describe the jet



Bubble collapse near a solid boundary: influence of viscosity 153

15

10

5

0

–5
1.5 2 2.5 3

Time

R
el

at
iv

e 
ve

lo
ci

ty

18.413
24.519
29.906
52.892
Impact
Jet formation

Figure 13. Relative velocity of the top and bottom poles of a collapsing bubble as a function of
time for various values of the Reynolds number (indicated in the legend). The white squares and
black dots mark the time of jet formation (curvature changes sign) and jet impact respectively.
α = 2.023, β = 2.625.

dynamics. Initially there is no jet and these curves are indistinguishable from the
upper curves. At the time of curvature inversion occurring at the north pole (and
corresponding to jet formation) the curves separate (figure 12b). The jet continues to
penetrate inside the bubble and eventually hits the other side. If viscosity is too high
the jet is slowed down and never reaches the south pole.

As can be seen on figure 11(b), when Re is close to Rec the jet becomes very thin
and the impact occurs late in the cycle of oscillation. If we want to find the value
of Rec with a reasonable accuracy, we need to use a very fine grid in order to model
correctly the flow inside the jet. Such high resolutions would be impractical for a
parametric study of Rec(α, β). We therefore sought an alternative and more easily
computable definition of Rec.

Figure 13 illustrates the time evolution of the relative velocity of the top and
bottom poles for various values of Re. The relative velocity is chosen to be positive
during collapse and negative during expansion. The black dots indicate the instant of
impact and the white squares indicate the instant of jet formation (curvature changes
sign at the top pole). As the Reynolds number decreases the impact is delayed and
the impact velocity decreases. For values of Re close to Rec, the curve has two
extrema: a maximum relative velocity is reached near the end of the collapse and
a minimum relative velocity occurs not long after jet formation. Moreover, near the
critical Reynolds number, the relative velocity at impact is seen to be close to its
minimum value. Therefore we take the value of Re for which the minimum relative
velocity is zero as an alternative definition of Rec (i.e. at some point close to the
beginning of jet formation the tip of the jet is moving exactly as fast as the bubble is
re-expanding).

Figure 14 confirms that both definitions give similar values for Rec (17.15 and 17.77
for the impact and the minimum relative velocity respectively). Moreover, the impact
velocity is strongly dependent on the Reynolds number near the critical value. This
new criterion is much easier to test numerically since we only need the value of the
minimum velocity and do not need to solve the jet impact directly.
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velocity is zero gives a good approximation of the Reynolds number for which the jet impact
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The curves on figure 15(a) have been obtained for various values of α (shown in
the legend). Each value of Rec is found using a bisection technique. On average, five
simulations are necessary to find a value of Rec with a 3% accuracy (each simulation
takes approximately 15 minutes on a PC). As the value of β increases, it becomes
more difficult to form a jet and viscous effects play a more important role: the value
of Rec increases. On the other hand when α increases, the collapse velocity is larger
and viscous effects tend to be smaller: the value of Rec decreases.

The curves of figure 15(a) can be rescaled as shown on figure 15(b). The black curves
on figure 15(a) are the rescaled versions of the interpolating curve of figure 15(b). The
agreement is excellent, and the discrepancies observed in particular for high values of
β for α = 2.023 and α = 1.921 can be attributed to the formation of thin jets which
are difficult to resolve accurately.

We have obtained this scaling empirically by measuring numerically the correlation
C(η, ζ) between the transformed point sets, where the transformation is: β → β/αη

and Rec → Rec/α
ζ . The correlation is computed as follows. Given a set of points

(αi, βi, Rei), for every pair of coefficients (η, ζ) the following operations are performed:
(a) the coordinates (xi, yi) are obtained as

xi ← βi

α
η
i

and yi ← Rei

αζi
;

(b) these coordinates are normalized as

xi ← xi − x̄
σx

and yi ← yi − ȳ
σy

,

where x̄, ȳ are the mean values and σx, σy the standard deviations;
(c) a polynomial p(x) of order eight is interpolated through these points through

minimization of L =
∑

(p(xi)− yi)2;
(d) the correlation is then defined as C(η, ζ) = log(Lmin).
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Figure 15. (a) Value of the critical Reynolds number Rec as a function of the relative distance
to the solid wall β. Each curve corresponds to a different value of the relative initial radius α
(indicated in the legend). (b) Rescaled version of (a). The black line is an interpolating polynomial.
(c) Rescaled version of (a) for the theoretical exponent η = 21/8.
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Figure 16. Numerical evaluation of the correlation C(η, ζ) between the rescaled point sets of
figure 15(a). (b) An enlarged view of a portion of (a).

As illustrated on figure 16, the maximum correlation is obtained for values of η
and ζ close to 3 and 1/2 respectively.

5. Theory
In what follows we describe a theory based on the approximation of a relatively

large Reynolds number, a large initial bubble radius α and a large distance to the
wall β. Thus in our estimates we first neglect the viscous effects. Then we discuss
stability and viscous corrections.

5.1. Velocity condition

The asymmetrical bubble collapse that heralds jet formation is influenced by the
presence of the wall. While the approximately spherical bubble shrinks in size, its
centre of mass is attracted towards the wall by the image bubble. As the bubble
approaches the wall, a momentum Q is gained mostly by the liquid phase surrounding
it, the so-called added-mass momentum. Here,

Q̇ = − 4
3
πR3 ∂p

∂z
, (5.1)

where we have used dimensionless variables as in (4.2), but in what follows we drop
the ? subscripts for simplicity. The added-mass momentum may be expressed in terms
of the vertical position of the bubble zb(t) as

Q = CM
4
3
πR3żb, (5.2)

where CM is the added-mass coefficient, approximately equal to 1/2 at high Reynolds
numbers. To estimate conditions for jet formation and impact, we distinguish two
effects: the stability or instability of the near-spherical bubble motion, and the possible
mismatch between the time scale of the rebound and the time scale of the jet traversing
the bubble. The first condition is a jet formation condition, while the second is a
sufficient velocity condition. We begin with the jet impact.

In what follows, we first investigate the spherical collapse, then the effect of the
image bubble. We neglect viscosity. As in the numerics, surface tension is ignored.
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Then equation (4.2) becomes

RR̈ + 3
2
Ṙ2 = R−3γ − 1. (5.3)

This equation integrates to

E0 = R3Ṙ2 +
2

3γ − 3
R−3γ+3 + 2

3
R3. (5.4)

We have R = Rm at minimum radius and R = α at maximum radius. Assuming α� 1
we have E0 = 2

3
α3 and

Rm ∼ [(γ − 1)1/3α]1/(1−γ). (5.5)

This formula is a good approximation for high Re as confirmed by figure 17 where we
have plotted the ratio of the maximum to minimum radius α/Rm for different values
of α and Re. All the simulations we have performed are represented which also shows
the small influence of β on the compression ratio.

In what follows we omit γ-dependent prefactors. A full solution may be found for
the inviscid motion in the form of an integral, but we shall only need some basic
asymptotic features of the solution at large α. There is a time scale during which the
radius remains close to Rm and the typical acceleration is R̈m. From (5.3)

R̈m ∼ R−3γ−1
m (5.6)

and thus

tm ∼ (Rm/R̈m)1/2 ∼ α 2+3γ
2−2γ , R̈m ∼ α 3γ+1

γ−1 . (5.7)

We set the reference time t = 0 at the point of minimum radius. There is the
well-known outer solution for |t| ∼ 1 of the form

R ∼ |t|2/5α3/5, (5.8)

and an inner solution for |t| <∼ tm. We are now in position to integrate the added-
mass equation (5.1). The pressure gradient may be estimated from the pressure field
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associated with the image bubble. From Bernouilli’s equation the dominant term is,
in dimensionless units,

p = −1

2

Ṙ2R

r
− 1

2

Ṙ2R4

r4
. (5.9)

At large β and at distance H (still in dimensionless units) from the wall the leading
order is

|∇p| ∼ Ṙ2R

H2
. (5.10)

Thus

Q ∼
∫ 0

−α
Ṙ2R4

H2
dt. (5.11)

Using the inner and outer scalings, we find that the leading-order contribution comes
from the outer solution (5.8), thus, since β = H/α we obtain

Q ∼ α3β−2. (5.12)

The jet forms at time 0 near minimum radius. (This is obviously an approximation,
as can be seen from numerical results, figure 12(b). Varying viscosity may advance or
delay the time of jet formation.) A kind of equipartition principle leads us to assume
that it obtains half the added-mass momentum, on a spatial scale of the order of Rm.
Thus the jet velocity VJ is given by

VJ ∼ Q/R3
m (5.13)

and thus

VJ ' CJα3γ/(γ−1)β−2. (5.14)

We have measured the jet velocity directly from the data: the results, although
relatively noisy, are consistent with the above scaling for Re > 100 with a prefactor
CJ ' 0.05. We can now state our first condition for the impact of the jet: the time
that the jet takes to traverse the bubble must be shorter than the small time scale tm.
For if it were otherwise, the south and north pole of the bubble would separate ever
faster, while the jet, due to viscous effect, would slow down. The critical velocity is of
the order

VJ ∼ Rm/tm, (5.15)

which leads to

β2α
−3
2

γ
γ−1 ∼ 1. (5.16)

A γ-dependent numerical constant must appear on the right-hand side. For γ = 7/5
we thus have

βα−21/8 = C0. (5.17)

In a graph with βα−21/8 on the horizontal axis and Re/α1/2 on the vertical axis, the
inviscid dynamics yield a vertical line, to the right of which there is no jet impact.

5.2. Viscous effects

What happens when a small viscosity is added? On the one hand most of our
estimates involve only the dynamics of a spherical bubble, without the image bubble
forcing. All these estimates are affected by corrections of the form νf(α) where f(α)
is some function that depends on α but not on β. The exact expressions are complex
since they involve the integrals of the inviscid motion. On the other hand the added-
mass momentum computed in equation (5.1) remains proportional to β−2. In that
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Figure 18. A graphical summary of our scaling theory. Curve I is the asymptotic limit at small
viscosity, separating a region where the velocity of the jet is too small for impact from a region of
large enough velocity. With viscosity, the separation appears as curve II. Jet formation is possible
if there is instability, it occurs above curves IIIa,b,c. However these curves are not scaling with β,
thus each β yields a different curve. From our numerical results, there is good reason to assume
that all curves of type III are below curve II, so the stability condition is not relevant.

equation the pressure gradient could now involve additional viscous terms. These
involve the pressure field of the image bubble and could thus depend on the distance
to the wall β, introducing corrections of the form νf1(β). We claim there are no such
corrections for the following reason: the fluid velocity around the bubble, imposed by
incompressibility, is u = ṘR2/r2 on which the viscous term ν∇2u vanishes (viscosity
appears in the Rayleigh–Plesset equation only because of surface terms). Thus the
pressure field created by the image bubble remains the one computed except for
boundary layers near the wall. Retaining γ = 7/5, all the νf(α) corrections amount to

βα−21/8 = C0 +
f(α)

Re
+ O

(
1

Re2

)
. (5.18)

Thus the impact condition, dependent on three variables α, β and Re, may be collapsed
onto a single graph in the variables x = βα−21/8 and y = Re/f(α). In that graph the
impact condition asymptotes to the vertical inviscid condition, in a manner consistent
with our numerical findings (figure 18). In the numerical data, f(α) ' α1/2 provides
a good fit (although there is some uncertainty on the exponent, see figure 16). We
have not yet found a convincing theoretical argument yielding f(α). It is possible
that f(α) combines several effects that yield an effective scaling law in the range of α
considered. We discuss these issues below.

5.3. Jet formation condition

The jet formation arises through an instability of the Rayleigh–Taylor type: as the
bubble wall is accelerated towards the heavier, liquid phase, it becomes instable to
deviations from sphericity. Usually the Rayleigh–Taylor instability will be present for
a broad band of spherical harmonic modes of which the high-order ones are the most
unstable. In viscous flow however most of the modes will be damped.

Viscosity may prevent that instability provided that the time scale for viscous
diffusion tν = R2

m/ν is smaller than the time scale associated with the Rayleigh–
Taylor instability for a mode of length scale Rm. For plane waves of wavenumber
k the growth rate s = (gk)1/2. Here the most dangerous mode has approximately a
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wavenumber k ∼ 1/Rm and the equivalent of gravity is the acceleration R̈m, so the
time scale 1/s of the instability is the short time scale defined above: 1/s = tm. The
instability is thus marginal when tm ∼ tν .

Equating the viscous and instability time scales tm and tν yields a critical condition
for jet formation:

Re ∼ α 3γ−2
2−2γ . (5.19)

In the diatomic case γ = 7/5 this yields Re = α−11/4. Notice that this scaling does
not involve β (the influence of β on the exponential growth phase of the instability
yields logarithmic corrections). Thus in the variables of our scaling diagram, retaining
the theoretical value of the previous section for the exponent of x, x = βα−21/8 and
y = Reα−1/2 we have y = (x/β)22/21. This is almost a straight line and may have some
connection with the lower part of our numerical–experimental curve.

5.4. Discussion

We find two conditions to observe jet impact: one of sufficient velocity and one of
stability.

The critical lines for the two conditions are shown on figure 18. As β decreases,
the condition for stability moves up. However, our numerics show that it does not
intersect the sufficient velocity condition: near the critical Re, the jet always forms and
what is relevant is the time it needs to reach the other side of the bubble. Thus the
sufficient velocity condition is the only relevant one. However, with surface tension
added, it is possible that the jet formation condition could become relevant.

An interesting consequence of our theory is that it runs counter to a conventional
point of view. It is generally considered that the more spherical the bubble, the later
the jet develops and thus the stronger jet impact is. Near a wall β controls bubble
sphericity: the further the bubble is from the wall, the more spherical it remains, at
least initially. Thus the jet velocity should increase with β (Brennen 1995; Blake &
Gibson 1987). This is not consistent with our asymptotic scaling, where at large β the
jet velocity is small (equation (5.14)). It seems that the conventional point of view is
based on relatively small values of β for which jets form very early. Then impact may
happen well before R reaches Rmin which would reduce the jet velocity at the time of
impact compared to the theoretical jet velocity at R = Rmin. Indeed recent numerical
results by Blake & Keen (2000) show that jet velocity first increases, then decreases
as the bubble is located further from the wall.

Our theory is only partially in agreement with the numerical experiments. The
exponent 21/8 that we find in our theory differs from the exponent that best collapses
the data in figure 15(a). If we use the variable x = βα−21/8 instead of βα−3 we obtain
figure 15(c). The collapse is markedly worse. Choosing f(α) to be something other
than a power law could perhaps improve the collapse in view of the above theory.
We leave this and similar attempts to further study however.

We also point out that the theory is asymptotically valid for large α, β and Re
only. In our parametric study, α and β reach at most 3. Thus it is unlikely that the
theory will be very accurate, and the relatively poor agreement of figure 15(c) is not
surprising. What is in a sense surprising is the very good agreement obtained with
the empirical exponent in figure 15(b). An inviscid numerical study may shed further
light on this issue, as the value of the exponent η is determined by inviscid effects
alone.
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6. Conclusions
We have presented an original numerical technique to solve accurately the Navier–

Stokes equations with free surfaces. This method is not limited to simple geometries
or small interface deformations. Particular emphasis has been placed on the accurate
description of free-surface boundary conditions. Validation tests have shown an
excellent agreement with the Rayleigh–Plesset equation and a theoretical solution
obtained by Prosperetti for the small-amplitude shape oscillation of an ellipsoidal
bubble.

Direct comparisons between high-speed photographic series and numerical simu-
lations of bubble collapse near a solid boundary have shown a good qualitative and
quantitative agreement while giving access to the details of the process. However,
the simulations also show that viscous dissipation alone cannot explain the strong
damping of radial oscillations observed in the experiments. Acoustic and thermal
dissipation – not taken into account in the present code – should be included in order
to capture correctly the dynamics of the process after the first rebound. A simple
solution would be to use a more sophisticated model equation for the pressure in the
bubble.

A detailed parametric study of the influence of viscosity has demonstrated the
existence of a critical value of the Reynolds number below which jet impact is no
longer possible. A simple scaling law is shown to relate the value of this critical
Reynolds number to two other non-dimensional parameters controlling the problem:
the relative stand-off distance and the relative initial radius of the bubble.

We have presented a simple theory which describes correctly the overall character-
istics of the phase diagram we obtain. In particular, we demonstrate the existence of
a vertical asymptote in the parameter space of the rescaled non-dimensional control
parameters. This provides a simple upper bound for the domain in which jet impact
is possible, independently of the Reynolds number.

A number of further studies would be possible and useful. In order to reduce the
number of free parameters in the problem, we have neglected surface tension and
chosen a constant polytropic exponent for the gas law. It is interesting to discuss
the validity of this approximation. The simplest analysis of the effect of surface
tension involves the dimensionless ratio σ? (going back to our initial notation), which
compares the capillary time scale to the natural oscillation period of the bubble. A
still simple but more subtle analysis is to compute a time scale related to surface
tension near Rm. If this time scale is longer than tm then surface tension is negligible
with respect to the only time scale appearing in the analysis of stability and jet
velocity. The relevant dimensionless number is

N =
σ?t

2
m

R3
m

. (6.1)

Using the above estimates, for γ = 7/5, N = σ?α
−1/4 = [σ/(R0p∞)](RM/R0)

−1/4. It
is interesting to apply this to the strong compression ratios in sonoluminescent air
bubbles, which are very small. For a 5 µm air bubble, with α = 10, N ∼ 0.008 and
σ? ∼ 0.014. For typical experiments on bubble collapse with larger (1 mm) bubbles,
these numbers are even smaller. So for several practical applications neglecting surface
tension in the analysis of jet formation is justified.

On the other hand, a parametric study of the influence of the polytropic exponent
would allow us to confirm the generality of the scaling laws we have found numerically
and predicted theoretically. Moreover, while adequate for describing the general
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picture, the simple theory we propose is not able to explain the fact that the scaling
we find numerically is clearly valid not only in the inviscid limit but across the whole
range of Reynolds numbers we investigated. This remains an open question.

From a more practical point of view, it would be interesting to investigate how
our phase diagram for jet impact influences our understanding of cavitation damage
for real distributions of bubble sizes in experiments on hydrodynamic cavitation. If
a majority of cavitation bubbles fall in the zone of the phase diagram where no jet
impact is possible then cavitation damage would most probably be due only to the
overpressure caused by the bubble collapse.

Note added in proof

The computer code used in this simulation is now available at
http://www.lmm.jussieu.fr/˜zaleski/codes/dropcodes.html
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